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Multiplicity-free uq(n) coupling coefficients 
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t InstiNte of Theoretical Physics and Astronomy, GoItauto 12, Vilnius 2600, Lithuania 
t InstiNto de Fisica, "AM. Apartado postal 20-364. Delegation Alvaro Obregon. 
OlOOO Mexico DF. Mexiw 

Received 25 May 1994 

Abstract The coupling Wigner-Clebsch-Gordan) coefficients of the unitary quantum algebra 
u9 (n) are considered. The tensorial properties of the generator powers and their ordered products, 
used in the explicit projectors and weight lowering procedures. are established. Different 
expressions for the multiplicity-free isofactors of U,@) coupling coefficients (those coupling 
an arbivary and symmetric represenDtions) are derived. Explicit expression of the arbitrary 
isofactors in terms of their boundary values are proposed. Proportionality of the semistrrtched 
isofactors to the stretched q-recoupling coefficients of u,(n - 1) (q-analogues of 9jsymbols) 
is demonstrated. The stretched isofactors of u9(3)  are expressed in terms of Clebsch-Gordan 
coefficients of ~ ~ ( 2 ) .  

1. Introduction 

The Clebsch-Gordan coefficients of the quantum algebra uq(2) have been considered by 
Kirillov and Reshetikhin (1988), Nomura (1989), Ruegg (1990), Groza et al(1990), Smirnov 
et al (1991a). The explicit construction of the basis states of irreducible representations 
(irreps) of the quantum algebra u,(n)  for arbitrary n has been considered by Tolstoy (1990) 
where the extremal projectors are used and the matrices of the Cartan-Weyl generators in 
the Gel'fand-Tsetlin basis are presented. The weight lowering and raising operators have 
also been considered by Ueno etal (1989), Quesne (1993), Links and Gould (1993). 

Particularly, the u9(3)  algebra, its basis states and some elementary coupling coefficients 
have been considered by Smirnov and Tolstoy (1990). Smirnov etal (1991c), Smirnov and 
Kharitonov (1993). The q-tensor operators of up(n)  and the q-analogue of the pattern 
calculus are introduced by Biedenharn (1990), Biedenharn and Tarlini (1990), Gould and 
Biedenharn (1992), where the simplest explicit multiplicity-free coupling coefficients of 
uq(n) with the extremal operator shift pattern of the corresponding irreps of algebra and 
its subalgebra are also presented. For this purpose the projectors related to u,(n)  Casimir 
invariants have been used (Gould etal 1992). However, the corresponding reduced coupling 
coefficients form complete mairices only in the case of the elementary (vector) operators 
(Gould 1992). Some general properties of the Rad-Wigner algebra for the q-deformed 
algebras, their coupling and recoupling coefficients have been considered by Lienert and 
Butler (1992a). The Wigner-Eckart theorem for the unitary quantum groups has been 
considered by Klimyk (1992). The complementary Hecke algebra technique was used for 
the simple Clebschaordan coefficients of u,(n) by Pan and Chen (1993). 
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The main purpose of this paper is to consider the more or less general coupling coeffi- 
cients of quantum algebra u,(n)  and, particularly, their isoscalx factors (isofactors) for the 
chain u,(n) 3 u,(n - 1). Using the projectors and weight lowering operators in terms of 
the ordered generator powers, we develop the results concerning the symmetric tensor oper- 
ators and corresponding multiplicity-free isofactors of the unitary groups (cf AliSauskas et 
a1 1972, Chac6n et al 1972) as well as the explicit expansion of the more general isofactors 
in tenns of their boundary value (cf AliSauskas 1982, 1983, 1988, Pluhai: et aI 1986). 

2. Quantum algebra uq(n) and symmetric tensor operators of its subalgebra 

2.1. Definitions and notations 

In order to escape ambiguities, it is necessary to fix the commutation and comultiplication 
rules for the generators of the unitary quantum algebra u9(n) = U9(u(n)) ,  The quantum 
algebra uq(n) is a deformation of the u(n) enveloping algebra. It is defined by generators 
e i i f l ,  ei+li, i = I ,  2 , .  . . , n - I ,  and hi = eii, i = 1 ,2 , .  . . , n, which satisfy the relations 

[ h i , h , ] = O  i # j  (2.la) 

e;jtl = [eij, eij+l19 = e,jejj+r - qejj+leij (2.16) 

(2.14 
[eix, a i l  = [hi - hkl ( 2 . l e )  

eikekl 2 - [2]ekleikekl + e.&tk 2 = 0 (2.2a) 

[ [ e a ,  e d r .  ekdP-l = L k k ,  ed , - led ,  = 0. (2.26) 

[ X I  = -[-XI = (q" - q - x ) / ( q  - 4-1) (2.30) 

[ X I !  = [ X ] [ X  - I ] .  . . [2 ] [1 ]  (2.36) 

A(h j )  = hi 8 1 + 1 @hi  (2.4a) 
A(eii+l) = eii+l 8 1 / 2 ( h , - h w )  + q-l/2(k,-h1+1) 8 eii+l (2.46) 
A(e,+l,) = eL+li 8 q l / Z ( h < - h w )  + q - 1 / 2 ( h , - h w )  8 e .  1 + 1 1 .  . (2 .4~)  

We denote the irreducible representations (irreps) of u,(n) by the highest weight Atn)  
or the partition (Young scheme) [hl,, A z n r . .  . , A n n ] .  The canonical (Gelfand-Tsetlin) basis 
states may be expressed as (Tolstoy 1990) 

i < j 
ej+li = [ejclj.  eji],-t e,+ljeji - q-'ej .e.  I i + l j  i < j  (2.lc) 
[hi, eja] = Gijeik - Gikeji 

and the S e d  identities 

(i i k i I or i > k > I )  which may be written in tenns of the q-deformed commutators 

Here and below [ X I  is a q-number 

For x integer q-factorial is introduced 

with [ O ] !  = 1 and [ -n l !  = 03. We use the coproduct rules 



A ( n )  

A ( k )  
may 

- - - 

... 1 
ei, 

In equation (2.5) 

AI, . . . ... . . .  A,, 

A I k  ha Ak- lk  hkk 
h l k  h2k  ... h k - l k  

. . . . . . . . . . .  

. . . . . . . . . . . . . . . .  
... (2 .7~)  

i l k  

... if i c j < k  
A ( k )  )= 
Inax h 

=1,2 ,  .... k 

is a weight lowering operator with a normalization factor (Tolstoy 1990) 

(2.76) 

(2 .7~)  

(2.10) 

The extremal projectors satisfy conditions 
e. .P4' 11 k.9 - - P I k  X.q  e.. I t  = O  1 < i < j < k .  (2.12) 

Note, that the substitution q by q-' and vice versa in (2.lb) and (2.1~) (i.e. going from 
our and Smirnov et a1 (1991~) case to the Tolstoy (1990) case) is not important for our 
construction of basis states (2.5) and extremal projectors (2.10), but in the case of the inverse 
order of Pi, chosen in the projector all coefficients q- ( j - i - ' ) rJJ  should also be inverted (cf 
Smirnov et U! 1991~). (Such a problem cannot be disregarded when the lowest in&& 
i = 1.2, ... are eliminated in the restriction to subalgebra processes). The ordering of the 
separate factors in (2.8) and (2.10) is essential. 
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2.2. Symmetric tensor operators of subalgebras 

Let us introduce the symmetric tensor operators (respectively, covariant and contravariant 
one) of the subalpbras u,(k)  3 u,(k - 1) ZI . . . 3 u q ( l )  in terms of generators (2.1): 

S Alifauskns and Yu F Smirnov 

(2.13) 

The transposition formulae 

(2.15) 

(2.17) 

and their analogues (see Smirnov er a[ 1991c, appendix) allowed us to prove that the 
operators (2.13) and (2.14) satisfy the relations of the adjoint action 

eii+l Tpl-l,.,..p,q 4 ~~-~....,p,~ii+l 
~tCk.9)  IPCh,-hi+i) - - l t l /Zhc-h t+~)  j-pb(k.9) 

= Oi+i  - P ~ I I P ~  - p i - [  + 11)'/' ~ ~ ~ ~ : q ! ~ , + ~ , , . . , , ,  (2.18a) 

TPk(k.9) I/Z(hi-h,+>) - 1+1/2(h,-hi+i) TPk(k,r) 
PI- ,  ,...,PI 4 4 PI-, ,.... p ,  ei+li 

= ( [ ~ i + l -  pi + I I I P ~  - P~-II)"' TL-(,~::!~-~ .,.., p ,  (2.18b) 

(with q substituted by q-I in the (2.13) case), introduced in order that the Wigner-=kart 
theorem could be used (cf Biedenharn and Tarlini 1990, Smirnov etal 1991c, Klimyk 1992). 
The formulae (2.18) may be generalized to the following expansion: 

(2.19) 

2.3, Matrix elemenis of the generators powers in the Gelfand-Tsetlin basis 

As a rule we take q real and, of course, it is not a root of unity. We will prove the following 
expression for the mahix elements of the elementary generators of u9(n) raised to the power 
P: 
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where h = h(k), p = h(k-I) and U = h(k-2) are partitions. We use the notation 

A , w d A ;  PI =- iSi . \ ( -p , -1)k  AI 

(2.22) 

where n,  m, 1. k’ are integers, -m < I < n. Equal to 0 parameters k’ and I usually are 
omitted. Besides, 

(2 .23~)  
(2.236) 

where r, ii are truncated versions of partitions A, p. 
The matrix elements (2.20) do not depend on the parameters hi, ( 1  z k or 1 < k - 2) 

of lh)q. For p = 1 we obtain the usual formula of Jimbo (1986) or Tolstoy (1990). The 
all dependence of (2.20) from arbitrary U and A is included into the square root factors 
of the numerator and denominator, in accordance with pattern calculus rules (Gould and 
Biedenham, 1992) and can be proved by elementary induction from the p - 1 case to p case. 
In order to prove the proper normalization of the matrix element (2.20) (which may depend 
on only p and p’), we consider the particular case of (2.20) for U = = [PI, PZ. . . . , pt-21 
by means of the following relations: 

(2.246) 

The parameters i are decreasing from the left to the right in the factorization of the 
separate generators eip which appeared from the operator F(k-2)(7i. p‘) when acting into 
the highest weight bra vector. The extrema1 projector may be omitted in (2 .24~)  and eik-1 
should be transposed with with the help of (2.15). Thus, formula (2.7~) leaves only 
a single term in (2.24b), without ambiguity of the intermediate states. 

The proper dependence on A of special and general mahix elements of the generator 
powers is confirmed once again. Taking into account the symmetry of the p = 1 case 
under permutation of hi and v i - ] .  we can close the proof of the general case of the matrix 
element (2.20). The explicit matrix elements (2.20) may be more easy explained when they 
are factorized into the reduced mabix elements and isofactors of u,(k - 1) 3 up(k - 2). 

3. Isofactors with one of the representations symmetric 

3.1. The first class of expressions for isofactors 

The pattern calculus rules (Biedenham 1990, Gould and Biedenham 1992) may be 
generalized to the following expression of the special isoscalar factor of U&) 2 U& - 1) 
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(taking into account the differences in definition of the coproduct): 

S AliSauskas and Yu F Smirnov 

[; 0" & ([Pl!dkIh'J)1'2 sk,X-l[h'; PI 
Sk.k[h'; A1 Sk,k-l[k PI 

where the q-phase 

(3.1) 

(3.2a) 

(3.2b) 

depends on the shifts A& = hi - hi, p = cl=, Ai. The dependence of isofactor (3.1) on 
p and its q-factor (not included into q-numbers) may be checked by induction from the 
following relation: 

(3.3) 
A p - 1 h" 1: [ A" 1 1' 1: [ p - 1 1 p 1'') 

P O P  0 o o q  
where 1'' = [hi, . . . , hi-l, A; - 1, hi+l,. . . , A i ] )  supposing the absence of the q-phase factor 
in the q-recoupling ( R a d )  coefficients. The sum in the RHS is trivial, as well as the last 
isofactor. We postpone the proof of the proper normalization of (3.1) until subsection 3.2. 

Due to formula (2.20) the more general isofactor may be expressed as the reduced 
matrix element of the unit tensor operator (2.19): 

where 

is the q-phase; Ai = hi - Ai and Xj = fi$ - p j  are the shifts (7 = zli zj); 

(3.4) 

(3.5) 

(3.6) 

is the normalization factor and k - 1 summation parameters u = [ul , u2, . . . , Uk-l I accept 
values in the region 

max(fii, hi+l) < ui 4 hi) i = I ,  2 , .  . . , k - 1 .  
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3.2. Proof of the normalization of isofactors 

In order to prove the proper normalization of (3.4) and, thus, (3.1) (which may depend 
only on I and 1'1 we consider isofactor with special values p = X = [ I I ,  . . . , Ak-11 

and p' = I' [ I ; ,  , ..,I;-,]. (Note that we use a bar over Greek letters to denote the 
partitions in order to mark the truncated Young fableaux, but a bar over p or A indicates 
the parameter of the symmetric irrep or shifts of irreps of the subalgebra). In this case 
U = I ,  Ai = Ai(i i k ) ,  Ak = p - F and (3.4) gives 

- 

- -  

Otherwise we may consider the matrix elements of the extremal projector (2.10) 

(3.7) 

We use (2.4) and coproduct expansions of the composite generators 

A(eik) = e l k  @ 4 IlZ(h,-hr) + q- l /2(ht -hd  @ eix 

k - I  

,=if1 
-(q - q- l )  q - V 2 ( h i - h t ) e i j  @ e jk  q l l Z ( h ~ - h i )  (3.9a) 

I lZhi -ht )  + q-l12(h,-hd 0 eki A(%) = eki @ 4 

+(q - q - l )  q- l /2(hi -h i )ek j  @ eji q l / z ( h i - h )  (3.9b) 

where i < j c k ,  (cf Smirnov et a1 1991c) when acting with these generators into 
II(k)L @ Ip& The matrix elements between the highest weight states @ I q  and [&L do 
not vanish only for a single term arising from the expansion of each term of the extremal 
projector (2.10) according to the rules (2.4b). (2.4~) and (3.9), namely, when all powers 
of generators e i j  or eji are zero. (Note, that this condition is not satisfied in the case 
of the inverse order of P i j  in the P$ or after the substitution q + q-' in definitions 
(2.lb) and (Zlc).) The proof of this vanishing begins from terms arising from the factor n:zi Pik in (2.10). therefore the matrix elements of the whole projector may LE factorized 
in correspondence with the factorization of the coupling coefficients. Thus, the extremal 
isofactor (3.7) may be found from the following relation: 

j= i+l  

(3.10a) 
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(3.10b) 

The q-phase factors of the matrix elements af eti and e:; are mutually inverse in this 
case and the summation formula 

q a ( b - o + c l ) [ a  - s]! r,[a - C ] !  [b - a  C C  - l]! = (-1)C q [ S I !  [b -SI! [C - S I !  [c]! [ b ] !  [b - a - l]! C ( - l ) "  (3.11) 

where b > a (Smimov et a1 1991a, appendix) applied to (3.106) gives independently the 
same expression (3.7) which was derived from (3.4). 

3.3. The second class of expressions for isofactors 

We see that the expression (3.4) does not simplify for the highest weight state of the resulting 
irrep. Otherwise due to formulae (2.13). (3.1) and (3.4) and the Wigner-Eckart theorem we 
write the matrix elements for the products the generator ekk+land ek.-l,k+l powers: 

(3.12) 

An alternative expansion of the adjoint action 
(_1)8-YqP-Y P-T F P-Y T Y 

@,,+I 'X-I X + I  = E [ y l !  [F-,,]! eXk+leX-lkekk+l 
Y 

(3.13) 

related to (2.19). together with (2.20) (after substitution q -+ q-') leads to other class of 
expressions for the u c ( k )  3 u,(k - 1) isofactors 

(3.14) 

where notations (2.21), (2 .23,  (3.5) and (3.6) are used and summation parameters ui (1 6 
i 6 k) accept values 

m=(p;, bi) 6 ut 6 min(~t-1, 1;) 
We see that the all summation intervals are different from those of the (3.4) case. We may 
extend the summation over a chosen parameter ut to the all k intervals. The antisymmetric 
factor d&] ensure vanishing of this additional contribution into the whole quantity (3.14). 
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Then, the all dependence on ui of separate terms may be included into the numerator 
q-numbers with exception of the denominator factor 

[A; - ui + i - 1]![Ui -ha - i  + k ] !  

in such a way that the summation formula 

(3.15) 

(where m < n )  could be used. Formula (3.15) may be proved by induction with the help 
of the relation 

[A - s ]  = @-"[A - n ]  + qIA-"][n - s ]  

which allows us to reduce m or n without spoiling the condition m < n. The m = 0 Case of 
(3.15) (by the way, used together with (2.21) for the proof of (3.13)) should be considered 
separately. The relation 

[n  - s + 11 = [n + 11q" - [s]q"+l 

leads to 

and, after relabelling of the summation parameter, to 

The n = 0 and n = 1 cases are elementary. 
Hence, we obtain k different expressions for the up&) 3 uq(k - 1) isofactors: 

(3.16) 

where index i is used to denote the omission of the ith row in the partition U, the summation 
parameters uj are changing in the same intervals as in (3.14) and 

(3.17) 

(3.18n) 
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k k-I _ _  k k-1- 
= A,Aji. - f AjAr + f - j )  - f Aj(pi - j )  

I<j<j'  L(j<j '  J = I  j = l  

Formula (3.180) has been derived straightforwardly applying (3.15) to (3.14). Afterwards 
it was rearranged into a more convenient form (3.18b). 

Equation (3.16) fork = 2, i = 1 is equivalent to (5.17) of Smirnov etal (1991a) (after 
the substitution j ,  tf j z ,  ml c) -mz), when (4.1) of Groza et a1 (1990) and (3.9) of 
Nomura (1989) are related to (3.4) (with k = 2). 

3.4. Some special isofactors and their symmetry 

We present here some special isofactors and their symmetry properties which will be used 
in our next paper. The semistretched case of (3.17) (when hi = h ~ )  for i = 1,2, .  , , , k - I 
includes k - 2 summation parameters. We note that in the q = 1 case such an isofactor of 
u,(k) 3 u,(k - 1) is proportional to the doubly stretched recoupling coefficient (an analogue 
of 9j-coefficient-see AliSauskas et al 1972). 

The completely stretched c a e  of (3.17) (when h; = A I  + p, A j  = 4 ,  j = 2,3, . . . , k )  
for i = 1 gives 

with 

(3.20) 

where R f )  accepts value 

We see that (3.7) is also a particular case of (3.20). 
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For the lowest weight state of the resulting irrep we obtain in (3.4) c = 
[A;, hi, . . . , A ; ]  A'(-) and 

where 

In future we will also use the following particular case of (3.4): 

[p]!dk[h']$:[hj  - h k - j + k - l ] !  

[ A  h O h  & ' ] ; = , Q ? (  dk-i[hlnj=,[h; -hk - j + k I !  

with 
k 

( k )  - I Q, - Ai Aj + i p  hk - 4 
i < j  j = l  

Aj(hj - j + 1) 

Expression (3.4) allows us to prove the following symmetry property: 

p [-hk, ..., -hz, -A]]  - 
P [-Pk-i ,...,-Pi] 

(3.21) 

(3.22) 

We may go to partitions in notations of the first and resulting irreps in the LHS of (2.23) 
after addition of hito all parameters with minus sign. 

In accordance with Klimyk (1993), we may interchange the states to be coupled: 

with fixed the general phase relation and we may apply the *-operation 

(3.24) 

(3.25) 

where the phase factor is determined for the u9(2)algebra (subalgebra) and will be chosen 
as in (3.25). by convention. 

It is possible to generalize to the quantum algebra case the Regge-type symmetry of the 
U ( k )  isofactors (AliSauskas et al 1972) with respect to the summation intervals restjcting 
parameters in (3.4) or (3.16) and the relations and the summation theorems of the multiple 
hypergeometric series (Holman 1980, Gustafson 1987). 



5936 S AliSauskus and Yu F Smimov 

4. Boundary expansion of the general isofactors of u,(n) 3 uq(n - 1) and the 
semistretched isofactors 

Using the q-binomial expansion of coproduct (Ross0 1988, Smimov eta/ 1991c) and acting 
with the operator e:z-l on the coupled semimaximal state of irrep A of up(") we may write 
the following relation between the general and restricted isofactors of uq(n) 2 u,(n - 1) 
and u y ( n  - 1) 3 u,(n - 2) for the arbitrary multiplicity label p: 

We may simplify the first or the last isofactor in the RHS of (4.1) choosing w = 
[PI,. , . , p.-21 or v = [Az,. . . , A,,-] 1. Further, we may consider the shucture 

E 

( p  = p' + p"), extracted from (4.1) according to (2.20) and (3.1) (with the remaining q- 
factors independent on U' and U"). Supposing that the factor q P ' ( G  P ; - c  4') represents the 
dependence on v/' of the diagonal elements of R-matrix in an uncoupled basis 

"". , p' 0 1 R,32 1 p' 0; p" Y" ) 
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(this is the case for u,(2)-see Smirnov etal 1991b, appendix, and for uq(3)-Lienert and 
Butler 1992b) we can make a conjecture that structure (4 .3~)  is proportional to the stretched 
9j-symbol and isofactor of uq(n - I )  

,, , ("-1) 

(4.3b) 

(cf the u9(2) case, Smirnov etal 1992). 
We also see that in the semistretched case (for An = A; t A: = O), i.e. for those terms 

in the u9(n) coproduct which appeared in the u,(n - 1) coproduct decomposition in the 
case of irreps denoted by the same partitions, the auxiliary isofactor 

(4.4) 

and the general semistretched isofactor of U&) should be proportional to the recoupling 
coefficient of u,(n - I), in analogy with the relation between the isofactors of U ( n )  and 
the recoupling coefficients of U(n - 1) (AliSauskas 1969, AliSauskas et al 1971, Sullivan 
1973, Kramer eta! 1981). 

However, the general q-recoupling coefficients (analogues of 9j-symbols) are still not 
defined for u,(n), n 3. Since the q-analogue of the 9j-symbol of U,@) (Nomura 1989) 
in terms of three 6jq-symbols is not convenient for our purpose, we present here an explicit 
expression for the semistretched isofactor of u9 (3) 3 U&) 

(a'b') (d'b") (a b) 
(z')i' (z")i" (z)i V [ i ,  i', i"] R[a'b'i'z'] R[a"b"i"z" 1 

[a + l]! [i' - z']! [i" - z"]! [ i  +z]! [ i  - z]! [U]! 
(~~)r+.~q-r~atr-i+1~-s~i+r+1~[2~' - $ ] ! [ i  - i f  + i" + 

T,." [ S ] ! [ i ' t i " - i - s ] ! [ r l ! [ u - - r ] ! [ i - i ' -  z 1' ts-r]! 
[a" - r]![a' - U + r ] !  

[i'- z' - u - s  + r ] !  X '(4.5) 

in terms of parameters used by AliSauskas (1988) in the SU(3) case where irreps are labelled 
as mixed tensor irreps (a'b'), (d'b"), (a b) and 

a = h r - A 2  b=A2 h3=O 

i = $(PI - P Z )  z = A2 - $(@I + ~ 2 )  (4 4 
a = a'+"' - 2 u  b = b' + b"+ U z = z ' f z ' '+  U .  

Here the following notations are used: 

[ a + b - c l ! [ a - b + c l ! [ a + b + c +  l]! 
[b  + c - a ] !  

V[abc] = 

[a + z - i I ! b  + z  + i + I l ! [ b - z  - i l! [b - z + i  + I ] !  
[a l![b]![a t b +  I]! 

R[abiz] = 
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Qo) = ;(a' + 2~')"'' - Z" + i' - i) - $(a"+ Zz")(b' - z' - i') 
+$(if + i" - i)(i - i f  + i" + I) + $U(.' - U + I) 

S Alifaaskas and Yu F Smimov 
I 

-Ja"(i - z )  + ha(i - i' - z") . (4.9) 
We see that for q = 1 isofactor (4.5) is proportional to the stretched 9j-symbol (Jucys 

and Bandzaitis 1977). The completely stretched isofactor of u9(3)  is proportional to the 
Clebsch-Gordan coefficient of ~ ~ ( 2 ) :  

(a'b') (a'%") (a' -I- a", 6' + 6") (a'b"-~"Y)/Z+i(n"+b')-l"(u'+Y) 
(z')i' (z")i" (z'+ z'9i 

R[a' +a", b' t b", i, z' + z"] (2) 
X 

9 
R[a'b'i'z'] R[a"6"i"z"] (4.10) 

We see that multiplicity-free couplings for 4 3 )  may be exhausted by vanishing of some 
entrance of array (2.16) of AliSauskas (1988) as well as for SU(3) .  The usual syrmnetry 
properties and substitution (hook permutation) technique allows to derive the remaining 
multiplicity-free isofactors of u,(3) (cf. the S U ( 3 )  case-AliSauskas 1969). The isofactors 
of u9(n) with repeating irreps in the coproduct decomposition will be considered in our 
next paper, where the above presented results will be used as constructive elements. 
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